28 research outputs found

    A Wireless EEG Recording Method for Rat Use inside the Water Maze

    Get PDF
    With the continued miniaturisation of portable embedded systems, wireless EEG recording techniques are becoming increasingly prevalent in animal behavioural research. However, in spite of their versatility and portability, they have seldom been used inside water-maze tasks designed for rats. As such, a novel 3D printed implant and waterproof connector is presented, which can facilitate wireless water-maze EEG recordings in freely-moving rats, using a commercial wireless recording system (W32; Multichannel Systems). As well as waterproofing the wireless system, battery, and electrode connector, the implant serves to reduce movement-related artefacts by redistributing movement-related forces away from the electrode connector. This implant/connector was able to successfully record high-quality LFP in the hippocampo-striatal brain regions of rats as they undertook a procedural-learning variant of the double-H water-maze task. Notably, there were no significant performance deficits through its use when compared with a control group across a number of metrics including number of errors and speed of task completion. Taken together, this method can expand the range of measurements that are currently possible in this diverse area of behavioural neuroscience, whilst paving the way for integration with more complex behaviours

    A high-performance 8 nV/root Hz 8-channel wearable and wireless system for real-time monitoring of bioelectrical signals

    Get PDF
    Background: It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Finally, to the best of our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording electrocorticographic (ECoG) signals. Methods: To address this problem, we designed and developed a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless instrument (55 × 80 mm2). The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. Results: To provide ex vivo proof-of-function, a wide variety of high-quality bioelectrical signal recordings are reported, including electroencephalographic (EEG), electromyographic (EMG), electrocardiographic (ECG), acceleration signals, and muscle fasciculations. Low-noise in vivo recordings of weak local field potentials (LFPs), which were wirelessly acquired in real time using segmented deep brain stimulation (DBS) electrodes implanted in the thalamus of a non-human primate, are also presented. Conclusions: The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5 – 500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile and reliable tool to be utilized in a wide range of applications and environments

    Functional Characterization of Transcription Factor Motifs Using Cross-species Comparison across Large Evolutionary Distances

    Get PDF
    We address the problem of finding statistically significant associations between cis-regulatory motifs and functional gene sets, in order to understand the biological roles of transcription factors. We develop a computational framework for this task, whose features include a new statistical score for motif scanning, the use of different scores for predicting targets of different motifs, and new ways to deal with redundancies among significant motif–function associations. This framework is applied to the recently sequenced genome of the jewel wasp, Nasonia vitripennis, making use of the existing knowledge of motifs and gene annotations in another insect genome, that of the fruitfly. The framework uses cross-species comparison to improve the specificity of its predictions, and does so without relying upon non-coding sequence alignment. It is therefore well suited for comparative genomics across large evolutionary divergences, where existing alignment-based methods are not applicable. We also apply the framework to find motifs associated with socially regulated gene sets in the honeybee, Apis mellifera, using comparisons with Nasonia, a solitary species, to identify honeybee-specific associations

    Parametric correlations of local density-of-states fluctuations in disordered pillars, wires and films

    No full text
    We present a theoretical analysis of correlation properties of the local density of states in a disordered emitter probed by resonant tunnelling through a localized impurity state. The emitter is considered to be a cylinder of length L and radius R with elastic mean free path l much less than {L, R} and the effective dimensionality d less than or equal to 3 of the emitter is determined by the relation between the typical scale over which diffusion occurs, namely the quasi-particle relaxation length L-c and the dimensions L and R. The differential conductance measured in asymmetric double-barrier structures has been used (see, e.g., Schmidt T, Haug R J, Fal'ko V I, von Klitzing K, Forster A and Luth H 1996 Europhys. Lett. 36 61) to image local density-of-states fluctuations. We give analytic expressions for the variance and for correlations of the differential conductance with respect to voltage and applied magnetic field for the limits of a bulk three-dimensional emitter, a film, a wire and a pillar, and we determine the effect of magnetic anisotropy in lower dimensions. A numerical calculation, valid for arbitrary L, is performed in order to describe the crossovers between these limits where the correlation functions are sensitive to the shape of the emitter and the position of the resonant impurity
    corecore